Abstract

The Doppler effect in Fabry-Perot cavities with suspended mirrors is analyzed. The Doppler shift, which is intrinsically small, accumulates in the cavity and becomes comparable with or greater than the linewidth of the cavity if the cavity's finesse is high or its length is large. As a result, damped oscillations of the cavity field occur when one of the mirrors passes a resonance position. A formula for this transient is derived. It is shown that the frequency of the oscillations is equal to the accumulated Doppler shift and that the relaxation time of the oscillations is equal to the storage time of the cavity. Comparison of the predicted and the measured Doppler shifts is discussed, and application of the analytical solution for measurement of the mirror velocity is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.