Abstract
We describe techniques for laser spectroscopy in the vacuum-UV (VUV) spectral region that combine high spectral resolution with high absolute accuracy. A nearly transform-limited nanosecond laser source at 120 nm is constructed with difference-frequency mixing. This source is used to perform the first, to our knowledge, Doppler-free VUV measurement. We measure the inherently narrow 11S–21S two-photon transition in atomic helium with a spectral resolution of 7 parts in 108 (180 MHz), the narrowest line width so far observed at such short wavelengths. Careful measurements of optical phase perturbations allow us to determine the absolute frequency of the line center to a fractional uncertainty of 1 part in 108. Improvements now in progress should reduce this uncertainty to 2 parts in 109.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.