Abstract

Blood flow measurement using an improved surface integration of velocity vectors (SIVV) technique was tested in in vitro phantoms. SIVV was compared with true flow (12–116 mL/s) in a steady-state model using two angles of insonation (45° and 60°) and two vessel sizes (internal diameter = 11 and 19 mm). Repeatability of the method was tested at various flow rates for each angle of insonation and vessel. In a univentricular pulsatile model, SIVV flow measured at the mitral inlet was compared to true flow (29–61 mL/s). Correlation was excellent for the 19-mm vessel (r 2= 0.99). There was a systematic bias but close limits of agreement (mean ± 2 SD = −24.1% ± 7.6% at 45 °; +16.4% ± 11.0% at 60 °). Using the 11-mm vessel, a quadratic relationship was demonstrated between between SIVV and true flow (r 2 = 0.98–0.99), regardless of the angle of insonation. In the pulsatile system, good agreement and correlation were shown (r 2 = 0.94, mean ± 2 SD = −4.7 ± 10.1%). The coefficients of variation for repeated SIVV measurements ranged from 0.9% to 10.3%. This method demonstrates precision and repeatability, and is potentially useful for clinical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.