Abstract

Animals must instantaneously escape from predators for survival, which requires quick detection of approaching threats. Although the neural mechanisms underlying the perception of looming objects have been extensively studied in the visual system, little is known about their auditory counterparts. Echolocating bats use their auditory senses to perceive not only the soundscape, but also the physical environment through active sensing. Although object movement induces both echo delay changes and Doppler shifts, the actual information required to perceive movement has been unclear. Herein, we addressed this question by playing back phantom echoes mimicking an approaching target to horseshoe bats and found that they relied only on Doppler shifts. This suggests that the bats do not perceive object motion in the spatiotemporal dimension (i.e., positional variation), as in vision, but rather take advantage of acoustic sensing by directly detecting velocity, thereby enabling them to respond instantaneously to approaching threats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.