Abstract

We explore the possibility of decelerating and Doppler cooling of an ensemble of two-level atoms by a coherent train of short, non-overlapping laser pulses. We develop a simple analytical model for dynamics of a two-level system driven by the resulting frequency comb field. We find that the effective scattering force mimics the underlying frequency comb structure. The force pattern depends strongly on the ratio of the atomic lifetime to the repetition time and pulse area. For example, in the limit of short lifetimes, the frequency peaks of the optical force wash out. We show that laser cooling with pulse trains results in a "velocity comb", a series of narrow peaks in the velocity space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.