Abstract
Volumetric (3D) ultrasound imaging using a 2D matrix array probe is increasingly developed for various clinical procedures. However, 3D ultrasound imaging suffers from motion artifacts due to tissue motions and a relatively low frame rate. Current Doppler-based motion compensation (MoCo) methods only allow 1D compensation in the in-range dimension. In this work, we propose a new 3D-MoCo framework that combines 3D velocity field estimation and a two-step compensation strategy for 3D diverging wave compounding imaging. Specifically, our framework explores two constraints of a round-trip scan sequence of 3D diverging waves, i.e., Doppler and pair-wise optical flow, to formulate the estimation of the 3D velocity fields as a global optimization problem, which is further regularized by the divergence-free and first-order smoothness. The two-step compensation strategy is to first compensate for the 1D displacements in the in-range dimension and then the 2D displacements in the two mutually orthogonal cross-range dimensions. Systematical in-silico experiments were conducted to validate the effectiveness of our proposed 3D-MoCo method. The results demonstrate that our 3D-MoCo method achieves higher image contrast, higher structural similarity, and better speckle patterns than the corresponding 1D-MoCo method. Particularly, the 2D cross-range compensation is effective for fully recovering image quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.