Abstract
AbstractPhotoelectrochemical (PEC) water splitting is a promising strategy to convert solar energy into hydrogen fuel. However, the poor bulk charge‐separation ability and slow surface oxygen evolution reaction (OER) dynamics of photoelectrodes impede the performance. We construct In‐ and Zn/In‐doped SnS2nanosheet arrays through a hydrothermal method. The doping induces the simultaneous formation of an amorphous layer, S vacancies, and a gradient energy band. This leads to elevated carrier concentrations, an increased number of surface‐reaction sites, accelerated surface‐OER kinetics, and an enhanced bulk‐carrier separation efficiency with a decreased recombination rate. This efficient doping strategy allows to manipulate the morphology, crystallinity, and band structure of photoelectrodes for an improved PEC performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.