Abstract
In this study, we incorporated molybdenum disulfide (MoS2) nanosheets into sol-gel processing of zinc oxide (ZnO) to form ZnO:MoS2 composites for use as electron transport layers (ETLs) in inverted polymer solar cells featuring a binary bulk heterojunction active layer. We could effectively tune the energy band of the ZnO:MoS2 composite film from 4.45 to 4.22 eV by varying the content of MoS2 up to 0.5 wt %, such that the composite was suitable for use in bulk heterojunction photovoltaic devices based on poly[bis(5-(2-ethylhexyl)thien-2-yl)benzodithiophene- alt-(4-(2-ethylhexyl)-3-fluorothienothiophene)-2-carboxylate-2,6-diyl] (PTB7-TH)/phenyl-C71-butryric acid methyl ester (PC71BM). In particular, the power conversion efficiency (PCE) of the PTB7-TH/PC71BM (1:1.5, w/w) device incorporating the ZnO:MoS2 (0.5 wt %) composite layer as the ETL was 10.1%, up from 8.8% for the corresponding device featuring ZnO alone as the ETL, a relative increase of 15%. Incorporating a small amount of MoS2 nanosheets into the ETL altered the morphology of the ETL and resulted in enhanced current densities, fill factors, and PCEs for the devices. We used ultraviolet photoelectron spectroscopy, synchrotron grazing incidence wide-/small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy to characterize the energy band structures, internal structures, surface roughness, and morphologies, respectively, of the ZnO:MoS2 composite films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS Applied Materials & Interfaces
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.