Abstract

In the attempt to induce spin-polarized states in graphene (Gr), rare-earth deposition on Gr/Co(0001) has been demonstrated to be a successful strategy: the coupling of graphene with the cobalt substrate provides spin-polarized conical-shaped states (minicone) and the rare-earth deposition brings these states at the Fermi level. In this manuscript, we theoretically explore the feasibility of an analogue approach applied on Gr/Ni(111) doped with rare-earth ions by means of density functional theory calculations. Even if not well mentioned in the literature, this system owns a minicone, similar to the cobalt case. By testing different rare-earth ions, not only do we suggest which one can provide the required doping but we also explain the effect behind this proper charge transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.