Abstract

Using X-ray induced photoelectron spectroscopy, the influence of Bronsted acids, namely sulfuric, nitric, and hydrochloric acid on the electronic properties of single-walled carbon nanotubes (SWCNTs) was investigated. Doping effects were monitored by changes in binding energy of the C 1s core level of the nanotubes. For all three acids, an acceptor type doping of the SWCNTs was observed by a shift of the C 1s core level towards lower binding energies. The inferred change of the Fermi-level position was 0.5 eV in the case of H2SO4, 0.2 eV in the case of HNO3, and 0.1 eV in the case of HCl. For HNO3 and HCl the doping was found to be unstable. The S 2p, N 1s, and Cl 2p core level spectra of the corresponding acid showed spectral features which can be attributed to the respective oxidation state of these anions in the acid, indicating that doping was induced by intercalation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call