Abstract

Water electrolysis in alkaline media is the most promising technology for hydrogen production, but efficient electrocatalysts are required to reduce the overpotential in HER and OER processes. In this work, the multicomponent transition metal catalyst Cr-Cu/CoOx was loaded on copper foam by electrodeposition and annealing, and the catalyst exhibited excellent electrochemical activity. The HER overpotential is 21 mV and the OER overpotential is 252 mV at a current density of 10 mA cm-2. The overall water splitting voltage is 1.51 V, even better than the Pt/C//RuO2 two-electrode system (1.61 V). The excellent performance of this catalyst is mainly derived from the close synergistic interaction among Cu, Co, and Cr. The doping of Cr modulates the valence states of Cu and Co at the active sites and improves the adsorption of various reaction intermediates. Density functional theory (DFT) calculations show that the doping of Cr can optimize the adsorption of the reaction intermediate H*. Meanwhile, the high-valent Cr and Co promote hydrolysis through strong adsorption with OH-. The present work provides a reasonable strategy for designing low-cost transition metals as efficient catalysts for water electrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call