Abstract

A series of nanosized W,N-co-doped anatase TiO2 catalysts with different dopant contents has been prepared by a microemulsion method and examined in the sunlight selective photo-oxidation of toluene and styrene. The activity results have been correlated with structural, electronic, and surface examinations of the catalysts done with the help of XRD–Rietveld, N2 physisorption and NH3 chemisorption–calorimetry, XPS, Infrared, and UV–visible spectroscopies. Irrespective of the reaction, a consistent reaction rate enhancement with respect to titania (nano-TiO2, P25) references and W-doped TiO2 systems is observed for single-phase anatase W,N-co-doped samples. This is likely linked with the decrease of the band gap energy decrease and results from a combined W–N cooperative effect on structural properties of the anatase network. W,N simultaneous presence also makes a drastic effect on selectivity, maximizing the yield to partial oxidation products. This appears related with surface properties of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.