Abstract

We introduce a novel high-voltage SiC p-i-n diode considering a charge plasma approach. This technique facilitates the formation of the anode and the cathode regions within the silicon carbide without requiring any impurity doping by taking advantage of the work-function difference between silicon carbide and metal electrodes. Utilizing the 2-D TCAD simulation, we represent the performance of the proposed doping-less silicon carbide p-i-n diode is analogous to the silicon carbide Schottky diode in terms of forward and reverse characteristics as well as temperature dependency. As opposed to the conventional (doped) silicon carbide p-i-n diode, the doping-less silicon carbide p-i-n diode holds a lower ON-state voltage drop and higher reverse saturation current. Although the doping-less silicon carbide p-i-n diode has the merits of the silicon carbide Schottky diode, but it has leverage over the corresponding counterparts by eliminating the doping and the high thermal budget fabrication processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.