Abstract

Doping induced spin-manipulation with magnetic (Ni) and non-magnetic (Mg) dopants constitutes the experimental attempts to obtain a singlet ground state system from the linear chain Heisenberg antiferromagnetic Cu-based d9 spin-1/2 trimer compound Ca3Cu3(PO4)4 with doublet ground state. The present study is a density-functional investigation of the effects of such doping on the spin-exchange mechanism and electronic structure of the parent compound. Site-selective doping with zero-spin dopants like Mg is proved to be more efficient than an integral spin dopant Ni in obtaining a spin-gap system with singlet ground state, as also observed in the experimental studies. Doping induced dimerized state is found to be the lowest in ground-state energy. Calculated spin exchange couplings along various possible pathways are observed to attain good agreement with earlier experimental results with suitable optimization of Coulomb repulsion (U) and exchange (J) parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.