Abstract

Abstract Organic photodiodes (OPDs) offer a myriad of advantages over conventional inorganic photodetectors, making them particularly attractive for imaging application. One of the key challenges preventing their utilization is the need for their integration into the standard CMOS processing. Herein, we report a CMOS-compatible top-illuminated inverted small molecule bi-layer OPD with extremely low dark leakage current. The device utilizes a titanium nitride (TiN) bottom electrode modified by a [6,6]-phenyl C61 butyric acid methyl ester (PCBM) cathode buffer layer (CBL). We systemetically show that doping the CBL enhances device's low voltage (below 1 V reverse bias) photoresponse by increasing the linear dynamic range (LDR) and making the bandwidth of the photodidoe broader without compromising the leakage current. The optimized device exhibits a dark leakage current of only ∼6 × 10−10 A/cm2 at −0.5 V. The external quantum efficiency (EQE) at 500 nm reaches 23% with a calculated specific detectivity as high as 7.15 × 1012 cm Hz1/2/W (Jones). Also the LDR approaches 140 dB and the bandwidth is about 400 kHz, at −0.5 V bias. The proposed device structure is fully compatible with CMOS processing and can be integrated onto a CMOS readout circuit offering the potential to be applied in high-performance large-scale imaging arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.