Abstract
AbstractPure and transition metal (TM)-doped ZnO nanocrystals were synthesized using a wet-chemical process. Synthesis was carried out in distilled water at 85 °C followed by calcining the as-prepared powders at 280 °C and 600 °C. Co, Mn and Fe doping at 4 and 8 mol % was achieved by adding CoCl2.6H2O, MnCl2 .4H2O and FeCl2 .4H2O respectively during the synthesis. Crystal phase characterization was carried out by X-ray powder diffraction (XRD) which confirmed the formation of ZnO in the wurtzite polymorph. The band gap energy of the nanocrystals was measured by both photoluminescence spectroscopy (using the Near Band Edge Emission) and UV-Vis absorption spectroscopy, using a modified version of the Tauc law. Widening of the band gap energy from 3.23 eV to 3.33 eV with increased doping concentration was observed for all the dopants. Ab-initio simulations of doped and undoped ZnO crystals using density functional theory as implemented in the Quantum Espresso package confirmed the increase in the band gap energies with doping concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.