Abstract

We use inelastic neutron scattering to study the evolution of the generalized phonon density of states (GDOS) of the $n$-type high-$T_c$ superconductor Nd$_{2-x}$Ce$_x$CuO$_{4+\delta}$ (NCCO), from the half-filled Mott-insulator ($x=0$) to the $T_c=24$ K superconductor ($x=0.15$). Upon doping the CuO$_2$ planes in Nd$_2$CuO$_{4+\delta}$ (NCO) with electrons by Ce substitution, the most significant change in the GDOS is the softening of the highest phonon branches associated with the Cu-O bond stretching and out-of-plane oxygen vibration modes. However, the softening occurs within the first few percent of Ce-doping and is not related to the electron doping induced nonsuperconducting-superconducting transition (NST) at $x\approx 0.12$. These results suggest that the electron-lattice coupling in the $n$-type high-$T_c$ superconductors is different from that in the $p$-type materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.