Abstract

Diamond-like carbon (DLC) coatings have garnered considerable interest due to their unique features, which include wear resistance with a low friction coefficient, high hardness, biocompatibility, and chemical inertness. Their tribological performance is highly dependent on tribological environment, structure, and mechanical properties of the coating. A major problem that can adversely impact the tribological properties of the DLC coating is insufficient adhesion to the substrate. This issue caused by mismatch of the substrate and coating thermal expansion coefficient (TEC) and high amount of internal stress in DLC coating. The limitations of DLC coatings for tribological performance can be overcome by incorporating different types of metallic and non-metallic elements into the coating structure. Recently, various efforts have been made to address this issue by doping certain elements into the DLC coating, including fluorine, nitrogen, silicon, and metals. This review discusses new advancements in doped DLC coatings designed to improve their tribological behavior in different specific applications such as high relative humidity, elevated temperature, and bio-implant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.