Abstract
Detailed investigations of nonstoichiometry as well as chemical and self-diffusion in nickel oxide have shown that doubly ionised cation vacancies and electron holes are the predominant defects in this material. The present work is an attempt to demonstrate that aliovalent impurities (Cr, Al, Na and Li) may considerably influence the concentration of these defects and, consequently, the oxidation rate of nickel at high temperatures. It has been shown that small amounts of tri-valent impurities (Cr, Al) bring about an increase of the oxidation rate, while mono-valent ones (Li, Na) decrease the rate of oxidation. These phenomena may satisfactorily be explained in terms of a doping effect. All experiments have been carried out as a function of temperature (1373-1673 K) and oxygen pressure (1-105 Pa) and consequently, it was possible to determine the influence of impurities not only on the oxidation rate but also on the activation energy of reaction and its pressure dependence. The results of these investigations could again be elucidated in terms of doping effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.