Abstract

We report on the control of functionality in long-wavelength light-emitting transistors (LETs) with an InGaAs single quantum-well embedded in N-InP/p-InAlGaAs/N-InAlAs structures by means of the choice of the doping level and dopant in the p-type base layer. As a dual-functional device, the LET works as a heterojunction bipolar transistor (HBT) with a current gain of ∼45 when the base doping level is ∼2 × 1018 cm−3 using zinc (Zn) as the dopant, and it functions like an efficient light-emitting diode (LED) with a carrier capture efficiency of ∼82% when the base doping is ∼8 × 1018 cm−3 using carbon (C) as the dopant. The distinctive device performance and functionality of Zn- and C-doped LETs are attributed to the different quantum capture efficiency and carrier lifetime in the quantum well originating from different base doping schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.