Abstract

The doping and temperature dependence of the thermodynamic properties in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. By considering the interplay between the superconducting gap and normal-state pseudogap, the some main features of the doping and temperature dependence of the specific-heat, the condensation energy, and the upper critical field are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependence of the superconducting transition temperature, the maximal upper critical field occurs around the optimal doping, and then decreases in both underdoped and overdoped regimes. Our results also show that the humplike anomaly of the specific-heat near superconducting transition temperature in the underdoped regime can be attributed to the emergence of the normal-state pseudogap in cuprate superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.