Abstract

To understand the nature of the high-temperature superconductors (cuprates) we have taken into consideration the interaction terms, which possess the structure of the hole–phonon (HP) and hole–hole–phonon (HHP) type. It was shown that for the high value of the HHP potential in comparison to HP, the superconducting critical temperature (TC) reaches the maximum value for the low concentration of holes, which fairly corresponds with the observed maximum of TC for hole-doped cuprates. The analysis was performed within the framework of the Eliashberg approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.