Abstract

The evolution of the density of states (DOS) and conductivity as function of well controlled doping levels in OC_1C_10-poly(p-phenylene vinylene) [OC_1C_10-PPV] doped by FeCl_3 and PF_6, and PF_6 doped polypyrrole (PPy-PF_6 have been investigated. At a doping level as high as 0.2 holes per monomer, the former one remains non-metallic, while the latter crosses the metal-insulator transition. In both systems a similar almost linear increase in DOS as function of charges per unit volume c* has been observed from the electrochemical gated transistor data. In PPy-PF_6, when compared to doped OC_1C_10-PPV, the energy states filled at low doping are closer to the vacuum level; by the higher c* at high doping more energy states are available, which apparently enables the conduction to change to metallic. Although both systems on the insulating side show log(sigma) proportional to T^-1/4 as in variable range hopping, for highly doped PPy-PF_6 the usual interpretation of the hopping parameters leads to seemingly too high values for the density of states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.