Abstract

A new kind of phosphorus-doped porous carbon framework (P-PCF) was synthesized using a simple and low-cost method and was used as a support material for loading Pd nanoparticles with an average diameter of 5~7 nm (Pd/P-PCF) for benzyl alcohol oxidation. Enhanced activity, selectivity, and stability were achieved over Pd/P-PCF in comparison to the undoped counterpart catalyst (Pd/PCF). Surface analysis of the fresh and reacted catalysts revealed that the selective oxidation of benzyl alcohol is favored using the Pd/P-PCF catalyst because of the modified electronic properties of Pd nanoparticles, the metal-support interactions, as well as the hydrophobic and basic surface properties of the catalyst, which originates from the phosphorus doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.