Abstract

In molecular-beam epitaxy a monolayer of Pb on the Si(111) surface induces single-crystal growth at temperatures well below those required for similar growth on a bare surface. We demonstrate that the suppression of dopant segregation at the lower temperatures attainable by Pb-mediated growth allows the incorporation of As donors at concentrations reaching a few atomic percent. When Pb and Si are deposited on an As-terminated Si(111) substrate at 350 °C, the Pb segregates to the surface without doping the Si film while the As is buried within nanometers of the substrate–film interface. The resulting concentration of electrically active As, 1.8×1021 cm−3, represents the highest concentration of As donors achieved by any delta-doping or thin-film deposition method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.