Abstract
In hole-doped cuprate superconductors at low carrier concentrations two energy scales are identified: the superconducting energy gap and the pseudogap. The relation between these energy scales is still a puzzle. In these compounds a measurement of the energy gap is not necessarily a probe of the order parameter. In the electron-doped cuprates the pseudogap does not obscure the superconducting state. Consequently, the superconducting gap can be studied directly in a tunneling experiment. Here we show that by studying superconductor/insulator/superconductor planar tunnel junctions we are able to map the behavior of the gap amplitude for the entire (doping-temperature) phase diagram of the electron-doped cuprate superconductor Pr2-xCexCuO4-δ. The superconducting gap, Δ, shows a BCS-like temperature dependence even for extremely low carrier concentrations. Moreover, Δ follows the doping dependence of Tc. We can therefore conclude that there is a single superconducting energy scale in the electron-doped cuprates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.