Abstract

At mean-field level the t-J model shows a phase diagram with close analogies to the phase diagram of hole doped cuprates. An order parameter associated with the flux or $d$ charge-density wave ($d$-CDW) phase competes and coexists with superconductivity at low doping showing characteristics identified with the observed pseudogap in underdoped cuprates. In addition, in the $d$-CDW state the Fermi surface is reconstructed toward pockets with low spectral weight in the outer part, resembling the arcs observed in angle-resolved photoemission spectroscopy experiments. However, the $d$-CDW requires broken translational symmetry, a fact that is not completely accepted. Including self-energy corrections beyond the mean, field we found that the self-energy can be written as two distinct contributions. One of these (called $\Sigma_{flux}$) dominates at low energy and originates from the scattering between carriers and $d$-CDW fluctuations in proximity to the $d$-CDW instability. The second contribution (called $\Sigma_{R\lambda}$) dominates at large energy and originates from the scattering between charge fluctuations under the constraint of non double occupancy. In this paper it is shown that $\Sigma_{flux}$ is responsible for the origin of low-energy features in the spectral function as a pseudogap and Fermi arcs. The obtained doping and temperature dependence of the pseudogap and Fermi arcs is similar to that observed in experiments. At low energy, $\Sigma_{R \lambda}$ gives an additional contribution to the closure of the pseudogap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.