Abstract

In the past decades, the doping of ZnO one-dimensional nanostructures has attracted a great deal of attention due to the variety of possible morphologies, large surface-to-volume ratios, simple and low cost processing, and excellent physical properties for fabricating high-performance electronic, magnetic, and optoelectronic devices. This article mainly concentrates on recent advances regarding the doping of ZnO one-dimensional nanostructures, including a brief overview of the vapor phase transport method and hydrothermal method, as well as the fabrication process for photodetectors. The dopant elements include B, Al, Ga, In, N, P, As, Sb, Ag, Cu, Ti, Na, K, Li, La, C, F, Cl, H, Mg, Mn, S, and Sn. The various dopants which act as acceptors or donors to realize either p-type or n-type are discussed. Doping to alter optical properties is also considered. Lastly, the perspectives and future research outlook of doped ZnO nanostructures are summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.