Abstract

Hot-wire chemical vapour deposition (CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide films. Indium (In)-, gallium (Ga)-, and aluminium (Al)-doped ZnO films were deposited at 400°C on sapphire-R, Si (100) and glass substrates using a cold wall pulsed liquid injection CVD system containing nichrome wires installed in front of the substrate holder. Zn, In, Al 2,2,6,6-tetramethyl-3,5-heptanedionates, and Ga 3,5-pentanedionate dissolved in 1,2-dimethoxyethane were used as precursors. Hall measurements were performed to evaluate the resistivity, carrier concentration, and carrier mobility in doped ZnO films grown on sapphire substrates at wire currents of 6A and 9A. The influence of the dopant type, doping level, substrate, and wire heating current on crystallinity and the electrical and optical properties of the films was investigated and discussed. The best electrical properties were obtained for Al- and Ga-doped films grown at 9A wire current (resistivity≈1×10−3Ωcm, carrier mobility≈50cm2V−1s−1 and carrier concentration≈1×1020cm−3). The films exhibited a high transmittance in the mid-infrared region (≈90% at 2.5μm). Additional annealing of the films at 400°C in a mixture of Ar and hydrogen (10%) resulted in the increase in carrier concentration and mobility and in the reduction of film resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.