Abstract

The conductivity equation developed in our previous work without any restrictions to specific materials is employed to explore how superconductivity transition temperature Tc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_{c}$$\\end{document} changes with the doped hole or electron concentrations based on the free volume concept. The predicted relationship is used to fit experimental data available in the literature and a good agreement with observations is achieved. Our findings may provide an alternative explanation for doping-induced domes and/or double domes with a-dip phenomena observed among many superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.