Abstract

Because of its high specific surface area and unique electronic properties, graphene with substitutional impurity metal atoms and clusters attached to defects in the graphene sheet is attractive for use in hydrogen fuel cells for oxygen reduction at the cathode. In an attempt to find a cheap yet efficient catalyst for the reaction, we use density-functional theory calculations to study the structure and properties of transition-metal-vacancy complexes in graphene. We calculate formation energies of the complexes, which are directly related to their stability, along with oxygen and water adsorption energies. In addition to metals, we also consider nonmetal impurities like B, P, and Si, which form strong bonds with under-coordinated carbon atoms at defects in graphene. Our results indicate that single Ni, Pd, Pt, Sn, and P atoms embedded into divacancies in graphene are promising candidates for the use in fuel cell cathodes for oxygen reduction reaction (ORR). We further discuss how ion irradiation of graphene combined with metal sputtering and codeposition can be used to make an efficient and relatively inexpensive graphene-based material for hydrogen fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.