Abstract

Electrocatalytic nitrogen fixation under ambient conditions on vanadium dichalcogenides (VX2) with non-metal dopants has been explored herein. Understanding the interface chemistry, inherent electronic and acute synergistic nature of non-metal dopants on two unique phases of VX2 has been meticulously explored through a scrutiny of several non-metal atoms as catalytic centers. The efficacity of N2 chemisorption and NN bond activation has been implemented as crucial parameters to realize boron and carbon doped VX2 monolayers to be electrocatalytically active for nitrogen reduction reaction (NRR). Detailed investigation on the NRR mechanism brings out the pivotal role of thermodynamic favourability for product formation obtained from Gibbs free energy differences. The charge transfer on N and π-π* orbital hybridization and electron “donor–acceptor” mechanism between the non-metal and N2 has been found to modulate the electrocatalytic barrier for NRR on VX2 monolayers. This study proposes boron doped VS2 as an efficient chemically feasible, earth abundant sustainable electrocatalyst for NRR with an overpotential as low as 0.06 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.