Abstract

This paper presents an asymptotic model for the unsteady transport of a dopant during the growth of a semiconductor crystal from a melt with an externally applied magnetic field. The melt is divided into (1) mass-diffusion boundary layers where convective and diffusive mass transfer are comparable, and (2) a core region where diffusion is negligible, so that the concentration of each fluid particle is constant. A Lagrangian description of motion is used to track each fluid particle during its transits across the core between diffusion layers. The dopant distribution in each layer depends on the concentrations of all fluid particles which are entering this layer. The dopant distribution is very non-uniform throughout the melt and is far from the instantaneous steady state at every stage during crystal growth. The transient asymptotic model predicts the dopant distribution in the entire crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.