Abstract

A challenging issue is to estimate the n-type dopant profiles and, consequently, their diffusivities in shallow Ge n+/p junctions because of their abnormal dopant profiles that do not follow conventional Gaussian-distribution-based diffusion theory. In order to fit the abnormal dopant profiles in shallow junctions, what are due to (1) fast and asymmetric diffusion of n-type dopants and (2) dopant pileup caused by surface back-scattering phenomenon, we propose a new profiling function and verify it by using a fitting algorithm based on the least-squares method. Through this fitting algorithm, we estimate the diffusivity and peak-position values from the raw dopant profile data, and we provide the experimental diffusivity equations as a function of the annealing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.