Abstract

Conjugated polymer extraction (CPE) is a low-cost, scalable process that can enrich single-walled carbon nanotube (SWCNT) materials in organic media. For other separation methods in aqueous phases, redox chemistry and/or pH control dramatically affect the sorting process of the SWCNTs. We have previously determined that the CPE process can be fine-tuned by adjusting the pH on the tube surface. Here, we systematically studied the effect of redox chemistry on the CPE process by adding organic p-/n-dopants. At a very strong p-/n-doping level, static repulsions dominated the interactions between the tubes and the CPE lost selectivity. When the doping level changed from a medium p-doping to a neutral state, the yield of CPE increased and the selectivity was compromised. We also observed chiral selectivity when a weak p-dopant was used. A photoluminescence excitation mapping under different titration conditions provided more insight into the doping level of the tubes relative to their diameters, chiralities, and redox potentials. We proposed a mechanism for the CPE process. The semiconducting and metallic tubes are separated because of their different solubilities, which are determined by the bundling energy between the tubes and are related to their doping level in polymer solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call