Abstract
Ceria has emerged as an attractive candidate for solar thermochemical hydrogen production; however, the necessary temperatures for CeO2 reduction to Ce2O3 are too high for conventional solar concentrating systems, while the reduction to nonstoichiometric CeO2−δ below 1500 °C shows restricted chemical yield. Doping ceria with another metal can improve the reactivity at lower temperatures. This study focuses on the doping of ceria with different metals such as tantalum or trivalent lanthanides (La, Sm, and Gd) to form binary oxides and on the doping of ceria–zirconia solid solutions to form ternary oxides. Ceria materials doped with tantalum show a high reducibility, but the structural evolution during thermal treatment leads to the formation of a secondary phase that hinders the water dissociation reaction. Besides, the doping with trivalent lanthanides results in an improved thermal stability during consecutive cycles, while the hydrogen production is unchanged compared to ceria. Concerning ternary oxides...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.