Abstract

It is a great challenge to develop low-cost and dopant-free polymer hole-transporting materials (HTM) for PSCs, especially for efficient air-processed inverted (p-i-n) planar PSCs. A new homopolymer HTM, poly(2,7-(9,9-bis(N,N-di-p-methoxylphenyl amine)-4-phenyl))-fluorene (denoted as PFTPA), with appropriate photo-electrochemical, opto-electronic and thermal stability, was designed and synthesized in two steps to meet this challenge. By employing PFTPA as dopant-free hole-transport layer in air-processed inverted PSCs, a champion power conversion efficiency (PCE) of up to 16.82% (0.1 cm2) was achieved, much superior to that of commercial HTM PEDOT:PSS (13.8%) under the same conditions. Such a superiority is attributed to the well-aligned energy levels, improved morphology, and efficient hole-transporting, as well as hole-extraction characteristics at the perovskite/HTM interface. In particular, these PFTPA-based PSCs fabricated in the air atmosphere maintain a long-term stability of 91% under ambient air conditions for 1000 h. Finally, PFTPA as the dopant-free HTM was also fabricated the slot-die coated perovskite device through the same fabrication condition, and a maximum PCE of 13.84% was obtained. Our study demonstrated that the low-cost and facile homopolymer PFTPA as the dopant-free HTM are potential candidates for large-scale production perovskite solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.