Abstract

Dopamine is found in both neuronal and non-neuronal tissues in the larval stage of the fruit fly, Drosophila melanogaster, and functions as a signaling molecule in the nervous system. Although dopaminergic neurons in the central nervous system (CNS) were previously thought solely to be interneurons, recent studies suggest that dopamine may also act as a neuromodulator in humoral pathways. We examined both application of dopamine on intact larval CNS-segmental preparations and isolated neuromuscular junctions (NMJs). Dopamine rapidly decreased the rhythmicity of the CNS motor activity. Application of dopamine on neuromuscular preparations of the segmental muscles 6 and 7 resulted in a dose-responsive decrease in the excitatory junction potentials (EJPs). With the use of focal, macro-patch synaptic current recordings the quantal evoked transmission showed a depression of vesicular release at concentrations of 10 μM. Higher concentrations (1 mM) produced a rapid decrement in evoked vesicular release. Dopamine did not alter the shape of the spontaneous synaptic currents, suggesting that dopamine does not alter the postsynaptic muscle fiber receptiveness to the glutaminergic motor nerve transmission. The effects are presynaptic in causing a reduction in the number of vesicles that are stimulated to be released due to neural activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.