Abstract

The pathological hallmark of Parkinson's disease is the degeneration of dopaminergic nigrostriatal neurons, leading to depletion of striatal dopamine. Recent neuroanatomical work has identified pathways for communication across striatal subdivisions, suggesting that the striatum provides a platform for integration of information across parallel corticostriatal circuits. The aim of this study was to investigate whether dopaminergic dysfunction in Parkinson's disease was associated with impairments in functional connectivity across striatal subdivisions, which could potentially reflect reduced integration across corticostriatal circuits. Utilizing resting-state functional magnetic resonance imaging (fMRI), we analyzed functional connectivity in 39 patients with Parkinson's disease, both "on" and "off" their regular dopaminergic medications, along with 40 age-matched healthy controls. Our results demonstrate widespread impairments in connectivity across subdivisions of the striatum in patients with Parkinson's disease in the "off" state. The administration of dopaminergic medication significantly improved connectivity across striatal subdivisions in Parkinson's disease, implicating dopaminergic deficits in the pathogenesis of impaired striatal interconnectivity. In addition, impaired striatal interconnectivity in the Parkinson's disease "off" state was associated with pathological decoupling of the striatum from the thalamic and sensorimotor (SM) networks. Specifically, we found that although the strength of striatal interconnectivity was positively correlated with both (i) the strength of internal thalamic connectivity, and (ii) the strength of internal SM connectivity, in both healthy controls and the Parkinson's disease "on" state, these relationships were absent in Parkinson's disease when in the "off" state. Taken together our findings emphasize the central role of dopamine in integrated striatal function and the pathological consequences of striatal dopamine denervation in Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.