Abstract

Because central noradrenaline neuronal activity is tonically inhibited by noradrenaline (NA) itself via an action at prejunctional α 2-adrenoceptors, it was hypothesised that the blockade of central NA synthesis following acute dopamine-β-hydroxylase (DBH) inhibition might primarily deplete prejunctional NA levels and result in an increase in central NA neuronal activity through reduced NA autoinhibition. This hypothesis was tested in the rat following the acute administration of the DBH inhibitors diethyldithiocarbamate (DDC) and cysteamine (CSH). Computerised gas chromatography/mass spectrometry was used to precisely measure the hypothalamic levels of NA and dopamine (DA) together with those of their primary neuronal metabolites dihydroxyphenylethyleneglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), respectively. Both DDC (at 4 h) and CSH (at 30 min.) caused approximately a 50% reduction of hypothalamic NA concentrations. However this was associated with marked and highly significant increases in hypothalamic DHPG levels (by 50–100%) and in the hypothalamic ratio DHPG/NA. Also, when measured after CSH, the hypothalamic levels of the DHPG metabolite 3-methoxy-4-hydroxyphenylethyleneglycol were highly significantly increased. Consistent with increased DA neuronal activity, both DBH inhibitors raised DA and DOPAC levels and also the ratio DOPAC/DA in the hypothalami of treated rats and markedly suppressed serum prolactin levels (all p<0.01). The rise in hypothalamic concentrations of DHPG indicates that an increase in hypothalamic NA neuronal activity occurs following DBH inhibition. Significant elevations of blood glucose, corticosterone and ACTH were also observed after DBH inhibition. As we have previously demonstrated that increased central NA activity is associated with elevations of blood glucose, corticosterone and ACTH, these data provide further evidence for a functional increase in central NA activity caused by acute DBH inhibition. It is proposed that the increase in hypothalamic NA activity after DBH inhibition results from a primary depletion of the prejunctional α 2-active autoregulatory pool of NA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.