Abstract
During high-salt diet endogenous dopamine (DA) reduces jejunal sodium transport in young but not in adult rats. This study was designed to evaluate whether this effect is mediated, at the cellular level, by inhibition of Na+-K+-ATPase activity. Enzyme activity was determined in isolated jejunal cells by the rate of [gamma-32P]ATP hydrolysis. Cells were obtained from weanling and adult rats fed either with high- or normal-salt diet. In 20-day-old but not in 40-day-old rats Na+-K+-ATPase activity was significantly reduced during high-salt diet. This inhibition was abolished by a blocker of DA synthesis. The decreased activity was associated with a decreased alpha1-subunit at the plasma membrane. During high-salt diet there was an increase in DA content in jejunal cells from 20-day-old rats, associated with a parallel decrease in 5-hydroxytryptamine, compared with normal-salt diet. In 40-day-old rats, however, the catecholamine level remained unchanged during high-salt diet. Incubation of isolated jejunal cells with DA resulted in a dose-dependent inhibition of Na+-K+-ATPase activity in 20- but not in 40-day-old rats. We conclude that during high-salt diet, jejunal Na+-K+-ATPase in 20-day-old rats is inhibited, and this effect is likely to be mediated by locally formed DA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.