Abstract

Cognitive deficits and particularly deficits in working memory (WM) capacity are common features in neuropsychiatric disorders. Understanding the underlying mechanisms through which WM capacity can be improved is therefore of great importance. Several lines of research indicate that dopamine plays an important role not only in WM function but also for improving WM capacity. For example, pharmacological interventions acting on the dopaminergic system, such as methylphenidate, improve WM performance. In addition, behavioral interventions for improving WM performance in the form of intensive computerized training have recently been associated with changes in dopamine receptor density. These two different means of improving WM performance--pharmacological and behavioral--are thus associated with similar biological mechanisms in the brain involving dopaminergic systems. This article reviews some of the evidence for the role of dopamine in WM functioning, in particular concerning the link to WM development and cognitive plasticity. Novel data are presented showing that variation in the dopamine transporter gene (DAT1) influences improvements in WM and fluid intelligence in preschool-age children following cognitive training. Our results emphasize the importance of the role of dopamine in determining cognitive plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.