Abstract

Neural circuits are formed and refined during childhood, including via critical changes in neuronal excitability. Here, we investigated the ontogeny of striatal intrinsic excitability. We found that dopamine neurotransmission increases from the first to the third postnatal week in mice and precedes the reduction in spiny projection neuron (SPN) intrinsic excitability during the fourth postnatal week. In mice developmentally deficient for striatal dopamine, direct pathway D1-SPNs failed to undergo maturation of excitability past P18 and maintained hyperexcitability into adulthood. We found that the absence of D1-SPN maturation was due to altered phosphatidylinositol 4,5-biphosphate dynamics and a consequent lack of normal ontogenetic increases in Kir2 currents. Dopamine replacement corrected these deficits in SPN excitability when provided from birth or during a specific period of juvenile development (P18-P28), but not during adulthood. These results identify a sensitive period of dopamine-dependent striatal maturation, with implications for the pathophysiology and treatment of neurodevelopmental disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.