Abstract

The striatum integrates dopamine-mediated reward signals to generate appropriate behavior in response to glutamate-mediated sensory cues. Such associative learning relies on enduring neural plasticity in striatal GABAergic spiny projection neurons which, when altered, can lead to the development of a wide variety of pathological states. Considerable progress has been made in our understanding of the intracellular signaling mechanisms in dopamine-related behaviors and pathologies. Through the prism of the regulation of histone H3 and ribosomal protein S6 phosphorylation, we review how dopamine-mediated signaling events regulate gene transcription and mRNA translation. Particularly, we focus on the intracellular cascades controlling these phosphorylations downstream of the modulation of dopamine receptors by psychostimulants, antipsychotics and l-DOPA. Finally, we highlight the importance to precisely determine in which neuronal populations these signaling events occur in order to understand how they participate in remodeling neural circuits and altering dopamine-related behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.