Abstract

Molecularly imprinted polymers (MIPs) have been applied as molecular recognition elements to chemical sensors. In this paper, we combined the use of MIPs and electropolymerization to produce a sensor which was capable of detecting dopamine (DA). The MIP electrode was obtained by electrocopolymerization of o-phenylenediamine and resorcinol in the presence of the template molecular DA. The MIP electrode exhibited a much higher current response compared with the non-imprinted electrode. The response of the imprinted sensor to DA was linearly proportional to its concentration over the range 5.0 × 10−7-4.0 × 10−5 M. The detection limit of DA is 0.13 μM (S/N = 3). Moreover, the proposed method could discriminate between DA and its analogs, such as ascorbic acid and uric acid. This method was successfully applied to the determination of DA in dopamine hydrochloride injection and healthy human blood serum. These results revealed that such a sensor fulfilled the selectivity, sensitivity, sped, and simplicity requirements for DA detection and provided possibilities of clinical application in physiological fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.