Abstract

Dopamine and L: -glutamate are important signals which guide the development of functional neural circuits within the striatal complex. Disequilibrium of these neurotransmitter systems is believed to be etiological for the genesis of neurological and psychiatric diseases. Since dopamine plays a crucial role for the early transmitter-regulated differentiation of striatal GABAergic neurons, we emphasized that dopaminergic transmission may also be involved in the fine tuning of intra-striatal glutamate action. In this study, we report that dopamine decreases the expression of the glutamate transporter GLT1 but not GLAST in striatal astrocytes by measuring gene and protein expression. Using glutamate-uptake approaches, we demonstrate an increase in glutamate clearance of externally added glutamate in dopamine-treated cultures compared to controls. Our findings imply that dopamine regulates the availability of L: -glutamate in the developing striatum. It is also suggested that the application of dopaminergic drugs can interfere with ontogenetic processes within the striatal complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.