Abstract

This study examined the effect of dopamine on DNA synthesis and its related signal cascades in mouse embryonic stem (ES) cells. Dopamine inhibited DNA synthesis in both a dose- and time-dependent manner. Dopamine, SKF 38393 (D1 receptor agonist), and quinpirole (D2 receptor agonist) decreased the level of [(3)H]-thymidine incorporation. The level of cyclic adenosine 3, 5-monophosphate (cAMP) was increased by SKF 38393 but not by quinpirole. The protein kinase C (PKC) protein was translocated from the cytosolic fraction to the membrane compartment by dopamine. Dopamine also increased [Ca(2+)](i), which was blocked by EGTA (an extracellular Ca(2+) chelator), BAPTA-AM (an intracellular Ca(2+) chelator), nifedipine (a L-type Ca(2+) channel blocker), SQ 22536 [an adenylyl cyclase (AC) inhibitor] and neomycin [a phospholipase C (PLC) inhibitor]. Dopamine, SKF 38393, and quinpirole increased the level of p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and stress-activated protein kinase/Jun-N-terminal kinase (SAPK/JNK) phosphorylation. Dopamine also increased level of H(2)O(2) formation and activated the transcription factor family NF-kappaB. Moreover, SKF 38393, quinpirole, and dopamine inhibited cell cycle regulatory proteins, which is consistent with the change in the level of [(3)H]-thymidine incorporation observed. The dopamine-induced decrease in cyclin E, cyclin-dependent protein kinase-2 (CDK-2), and cyclin D1, CDK-4 were blocked by pertussis toxin (G protein inhibitor), SQ 22536, neomycin, bisindolylmaleimide I (PKC inhibitor), SB 203580 (p38 MAPK inhibitor), PD 98059 (p44/42 inhibitor), and SP 600125 (SAPK/JNK inhibitor). In conclusion, dopamine inhibits DNA synthesis in mouse ES cells via the cAMP, Ca(2+)/PKC, MAPKs, and NF-kappaB signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call