Abstract

BackgroundHigh levels of dopamine (DA) were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs) derived from women undergoing in vitro fertilization (IVF) are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality.MethodsCells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4) were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system.ResultsWe found members of the two DA receptor families (D1- and D2 -like) associated with different signaling pathways in human GCs, namely D1 (as expected) and D5 (both are Gs coupled and linked to cAMP increase) and D2, D4 (Gi/Gq coupled and linked to IP3/DAG). D3 was not found. The presence of the trophic hormone hCG (10 IU/ml) in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR) or protein levels (immunocytochemistry/Western blotting) of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S). Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed in the absence of extracellular calcium and was abolished by a D2 blocker (L-741,626). DA treatment (48 h) of human GCs resulted in slightly, but significantly enlarged, viable cells.ConclusionA previous study showed D2 in human GCs, which are linked to cAMP, and the present study reveals the full spectrum of DA receptors present in these endocrine cells, which also includes D2-like receptors, linked to calcium. Ovarian DA can act thus via D1,2,4,5, which are co-expressed by endocrine cells of the follicle and the corpus luteum and are linked to different signaling pathways. This suggests a complex role of DA in the regulation of ovarian processes.

Highlights

  • High levels of dopamine (DA) were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well

  • Evidence for D1,2,4,5 expression in human granulosa cells (GCs) We tested which DA receptors are present in human GCs, i.e. a cell type derived from large preovulatory follicles, which are in the process of differentiation into luteal cells (Fig. 1, 2, 3)

  • RT-PCR experiments performed with mRNA obtained from GCs on the 3rd or 4th day of culture yielded cDNAs of expected sizes (Fig. 1), which upon sequencing proved to be identical to the known human D1,2,4,5 sequences

Read more

Summary

Introduction

High levels of dopamine (DA) were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. Human granulosa cells (GCs) derived from women undergoing in vitro fertilization (IVF) are an adequate model for endocrine cells of the follicle and the corpus luteum and were employed in an attempt to decipher their DA receptor repertoire and functionality. NE may be able to interact with ovarian alpha- and beta-receptors present on granulosa cells (GCs) of the follicle [2,4,5]. Ovarian DA can be viewed as a precursor for NE in oocytes, endocrine cells and nerve cells and may have a plethora of functions (for example, steroid production and induction of follicle-stimulating hormone receptors) [9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.