Abstract
Two-dimensional (2D) membrane materials are widely employed for the accurate sieving of ionic contaminants and are of great importance for water reuse. However, 2D membrane materials often suffer from uneven thickness and surface defects, which severely limit their application prospects. Herein, a continuous 2D membrane (LCUM/D) was prepared using cellulose nanofibrils (CNFs) as the support backbone for the assembled layered double hydroxides (LDHs) and dopamine (DA) as the adhesive. The results demonstrated that LDHs could be uniformly distributed in the network structure of CNFs, and the defects on the membrane surface could be effectively compensated by DA. Simultaneously, the continuous LCUM/D showed excellent rejection (97.18%) and selectivity of ionic contaminants tellurium. Dopamine not only compensated for the surface defects of the 2D membrane and enhanced the rejection of tellurium, but also caused no significant loss of water permeance. Moreover, the LCUM/D exhibited stability, which facilitated its long-term application. In addition, the improved hydrophilicity allowed LCUM/D satisfactory anti-fouling properties. This study provides new dimensional insights into the fabrication of continuous 2D membranes for the removal of ionic contaminant and enhances their application prospects in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.