Abstract

A pathological hallmark of Alzheimer's disease (AD) is the presence within neurons and the interneuronal space of aggregates of β-amyloid (Aβ) peptides that originate from an abnormal proteolytic processing of the amyloid precursor protein (APP). The aspartyl proteases that initiate this processing act in the Golgi and endosomal compartments. Here, we show that the neurotransmitter dopamine stimulates the rapid endocytosis and processing of APP and induces apoptosis in neuroblastoma Neuro2A cells over-expressing transgenic human APP (Swedish mutant). Apoptosis could be prevented by impairing Pepstatin-sensitive and acid-dependent proteolysis of APP within endosomal–lysosomal compartments. The γ-secretase inhibitor L685,458 and the α-secretase stimulator phorbol ester elicited protection from dopamine-induced proteolysis of APP and cell toxicity. Our data shed lights on the mechanistic link between dopamine excitotoxicity, processing of APP and neuronal cell death. Since AD often associates with parkinsonian symptoms, which is suggestive of dopaminergic neurodegeneration, the present data provide the rationale for the therapeutic use of lysosomal activity inhibitors such as chloroquine or Pepstatin A to alleviate the progression of AD leading to onset of parkinsonism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.